Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Dong Li and Min Ji*

School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: jimin@seu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.080 wR factor = 0.205 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-Methoxy-4-morpholino-6-(3-morpholinopropoxy)quinazoline trihydrate

In the title compound, $C_{20}H_{28}N_4O_4\cdot 3H_2O$, the two morpholine rings adopt chair conformations. The crystal packing is stabilized by intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds involving the water molecules.

Received 23 March 2007 Accepted 3 April 2007

Comment

Epidermal growth factor receptor (EGFR) has become one of the significant target proteins in drug discovery (Kamath & Buolamwini, 2006), since its excess always leads to a variety of cancers. Among the small molecular inhibitors of EGFR, the quinazoline ring system, including 4-anilinoquinazoline and its derivatives, has been widely investigated. Many small molecular inhibitors of EGFR are used as anticancer drugs (Speake *et al.*, 2005), such as gefitinib (Levin *et al.*, 2002) and erlotinib (Sorbera *et al.*, 2002). As part of our studies in this area, we have focused our attention on 4-aminoquinazoline derivatives, and now report the synthesis and structure of the title compound, (I) (Fig. 1).

In compound (I), the two morpholine rings adopt chair conformations. For the C17–C20/N4/O4 ring, N4 and O4 deviate from the mean plane of C17/C18/C19/C20 by 0.627 (6) and -0.641 (6) Å, respectively. Atoms N1 and O1 deviate from the plane of C1–C4 by 0.655 (7) and -0.624 (7) Å, respectively.

In the crystal structure of (I), the constituent species interact by way of $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2), involving the water molecules.

Experimental

Potassium iodide (0.1 g) was added to a solution of 4-chloro-6-(3-chloropropoxy)-7-methoxyquinazoline (0.51 g, 1.8 mmol) in morpholine (10 ml) and the mixture was stirred at 343 K for 15 min.

© 2007 International Union of Crystallography All rights reserved

organic papers

Water (50 ml) was added to the reaction mixture, which was then extracted with chloroform (3 \times 10 ml), washed with brine (10 ml), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was crystallized from ethyl acetate, to afford the title compound as a crystalline solid. Crystals of (I) were obtained from ethyl acetate, by slow evaporation at room temperature (m.p. 372–373 K). Analysis calculated for C₂₀H₃₄N₄O₇: C 54.28, H 7.74, N 12.66%; found C 54.37, H 7.82, N 12.80%.

V = 2270.3 (8) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.10 \ \mathrm{mm}$

3 standard reflections

23 restraints

 $\Delta \rho_{\text{max}} = 0.93 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.42 \text{ e } \text{\AA}^{-3}$

every 200 reflections intensity decay: ?

4457 independent reflections

2267 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 (2) K

Z = 4

Crystal data

 $\begin{array}{l} C_{20}H_{28}N_4O_4{\cdot}3H_2O\\ M_r = 442.51\\ \text{Monoclinic, } P2_1/c\\ a = 10.437 \ (2) \ \text{\AA}\\ b = 10.438 \ (2) \ \text{\AA}\\ c = 21.004 \ (4) \ \text{\AA}\\ \beta = 97.17 \ (3)^\circ \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.962, T_{\max} = 0.990$ 4457 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.080$ $wR(F^2) = 0.205$ S = 1.014457 reflections 280 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW2−HW2B···OW3	0.85	2.22	2.787 (5)	125
$OW3-HW3B\cdots OW1$	0.85	2.14	2.747 (5)	128
OW3−HW3A···N2	1.01	1.84	2.836 (5)	167
$OW1-HW1A\cdots OW2^{i}$	0.85	2.15	2.715 (5)	123
$OW1 - HW1B \cdot \cdot \cdot N1^{ii}$	1.06	1.95	2.899 (5)	148
$OW2-HW2A\cdots O1^{iii}$	0.85	2.11	2.834 (5)	143
Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}.$	-x, -y + 2	2, -z + 1;	(ii) $-x, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)

The H atoms bonded to C atoms were placed in calculated positions, with C–H = 0.96–0.97 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The water H atoms were located in a difference map and refined as riding in their as-found relative positions with $U_{iso}(H) = 1.2U_{eq}(O)$. Atoms C5, C6 and C7 were restrained so that their U^{ij} components approximated to isotropic behavior.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank Mr Hua-Qin Wang of the Modern Analysis Center of Nanjing University for his help in using the Nonius CAD-4 diffractometer and Mr Chang-Sheng Yao of

Figure 1

The molecular structure of (I) showing 40% displacement ellipsoids (arbitrary spheres for the water H atoms; other H atoms omitted for clarity). Dashed lines indicate hydrogen bonds.

Figure 2

The packing of (I). Hydrogen bonds are shown as dashed lines, and the H atoms not involved in the hydrogen bonds have been omitted for clarity.

the Normal University of Xuzhou for his help in data refinement.

References

- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kamath, S. & Buolamwini, J. K. (2006). Med. Res. Rev. 26, 569–594.
- Levin, M., D'Souza, N. & Castaner, J. (2002). Drugs Future, 27, 339-345.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sorbera, L. A., Castaner, J. S. & Silvestre, M. (2002). Drugs Future, 27, 923– 934.
- Speake, G., Holloway, B. & Costello, G. (2005). Curr. Opin. Pharmacol. 5, 343–349.